
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2529

Load Balancing in Distributed Database System

using Resource Allocation Approach

S. Jagannatha
1
, D.E. Geetha

2
, T.V. Suresh Kumar

3
, K. Rajani Kanth

4

Associate Professor, Computer Applications, MS Ramaiah Institute of Technology, Banagalore, INDIA
1

Associate Professor, Computer Applications, MS Ramaiah Institute of Technology, Banagalore, INDIA
2

Professor, Computer Applications, MS Ramaiah Institute of Technology, Banagalore, INDIA
3

Professor, Computer Applications, MS Ramaiah Institute of Technology, Banagalore, INDIA
4

ABSTRACT: Distributed database applications needs to replicate data to improve data availability and query response

time. Performance is improved because the fragment replica is stored at the nodes where they are frequently needed.

Load balancing by proper allocation of transaction, and replicas by sharing of resources for performance analysis is

important consideration during early stages. In this paper it is proposed a methodology for performance analysis of load

balancing by sharing of resources, allocation of fragment replicas and transaction in distributed database system. The

proposed methodology is simulated and results are validated using case study.

I. INTRODUCTION

Distributed Database is spread across the network of

computers where application needs. There are two major

phase database design: fragmentation and allocation.

Dividing the Global schema into a set of non overlapping

portion called fragments. Horizontal, vertical, and mixed

fragmentation is performed based on application

requirements. Allocate these fragments into nodes where

the application needs. Performance can be improved for

the transaction processing locally rather than remote node.

Availability and performance is important non functional

requirement should be consider during early design stages.

Replica improves the performance and availability by

concurrent processing for read only transaction.

Determine the number of replica is important

consideration for assessing the performance and

availability. Replica helps to reduce the waiting time; as a

result better performance can be achieved. During data

gather stage it is necessary to identity the required number

of fragment replica in order to meet performance

objective.

In replication control methods, the objective is to provide

a high degree of concurrency and thus faster average

response time without violating data consistency. Both

aborting and blocking mechanism are used for concurrent

access transaction and update of database. The number of

replicas are depending the query allocation in resources in

work load sharing. We assume that all replicas are stored

in the same server. During the updating of transaction, it

waits for the entire replica available and holds all the

transaction until it finishes updates.

The remaining part of this paper is organized as follows.

In Section 2 we proposed to study the related work. In

Section 3 we proposed methodology and Analysis model

using UML 2.0. We proposed and algorithm in section 4.

In section 5 we presented the validity of our algorithm

using case study. Finally a conclusion and future work is

given in Section 6.

II. RELATED WORK

Many researches made significant contribution of

replication and load balancing issues in distributed

database system. In IV.A.[1] this paper, author address the

performance comparison of database replication

techniques based on total order broadcast technique based

on classical replication scheme like distributed locking.

Performance has little influence in a LAN setting; total

order broadcast-based techniques are very promising as

they minimize synchronization between replicas. In

IV.A.[2] author describes design and analyze the data

replication strategies with the model of Dynamic Window

Mechanism algorithm jointly implemented with different

types of object replacement strategies with limited buffer

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2530

capacities. In IV.A.[3] author present concurrency control

in replicated real-time systems using Static Two Phase

Locking for deadlock free environment. It also decreases

the waiting time of transactions in wait queue. Author

provides framework designed to emphasize the role played

by different mechanisms and to facilitate comparisons.

The framework is to provide all replicated real-time

database and maintain all timing constrains and general

outline that consider improving the scalability by using

segmentation algorithm applied on the whole database,

with the intent to lower the degree of replication, purpose

of avoiding excessive resource usage, solving the

scalability problem IV.A.[4]. In IV.A.[5] author

presented a new mechanism on how to handle the

fragmented database replication through the Binary Vote

Assignment on Grid Quorum and it also address how to

build reliable system by using the proposed BVAGQ for

distributed database fragmentation. Author describes in

IV.A.[6] data replication and maintains consistency in

mobile computing environment. He propose the solid

infrastructure for distributing replicas and updates

propagation protocol to propagate recent updates between

the components of the replication architecture in a manner

that achieves the consistency of data. The proposed

replication strategy is compared with a baseline replication

strategy and shown that it achieves updates

propagation delay reduction, less communication cost,

and load balance as important requirements for

maintaining consistency in large scale environments

with large number of replicas and highly mobile users.

In IV.A.[7]authors surveys performance models for

distributed and replicated database systems. Author

classify the different alternatives and modeling

assumptions, and discuss their interdependencies and

expressiveness for the representation of distributed

databases. He used proven modeling concepts and gives an

example how to compose a balanced analytical model of a

replicated database. In IV.A.[8] author develop a

consistent mutable replication extension to meet the

rigorous demands of large scale data sharing in global

collaborations and uses a hierarchical replication control

protocol that dynamically elects a primary server at

various granularities. Experimental evaluation indicates a

substantial performance advantage over a single server

system. With the introduction of the hierarchical

replication control, the overhead of replication is

negligible even, when applications mostly write and

replication servers are widely distributed. In IV.A.[9]

address this problem with the GORDA architecture and

programming interface (GAPI) that enables different

replication strategies to be implemented once and

deployed in multiple DBMSs. They propose a reflective

model of transaction processing. Then we implement and

evaluate the proposed architecture in three representative

DBMS architectures. Author present in IV.A.[10]

replication-based data availability mechanism designed for

a large-scale cluster file system prototype named LionFS.

Replica updates, relaxed consistency model to enable

concurrent updating all replicas for a mutation operation,

greatly reducing the latency of operations. LionFS ensures

replica consistency if applications use file locks to

synchronize the concurrent conflict mutations. Recovery

of replica consistency needs not stop the file system

services and running applications. Performance evaluation

shows that our solution achieves 50-70% higher write

performance than serial replica updates. In IV.A.[11]

author used the concept of deferred updates propagation

enhances update performance and reduces transaction

response time for software-based replication in distributed

databases. They investigate the replication models and

propose one vector-based atomic broadcast protocol for

deferred updates, which is superior to the global

sequencer-based atomic broadcast protocol in robustness

and efficiency. In IV.A.[12] author introduces a model

for evaluating the performance of data allocation and

replication algorithms in distributed databases. Their

limits on the minimum number of copies of the object

because of communication cost and I introduce an

algorithm for automatic dynamic allocation of replicas to

processors. They compare the performance of the

traditional read-one write-all static allocation algorithm to

the performance of the dynamic allocation algorithm and it

shows that communication cost and I/O cost for which

static allocation is superior to dynamic allocation. In

IV.A.[17] this paper surveys performance models of

replicated distributed database. The model uses the

concepts of replication, communication, non uniform data

access using proven modeling concepts. Finally, author

compares the analytical results to measurements in a

distributed database system

III. METHODOLOGY

The performance of Distributed database is strongly

related to the concurrent execution, fragment replication,

allocation transaction, load sharing of resources in the

nodes of computer network. A multiple query of different

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2531

application tries to access same piece of data in the same

server. Data replicas are stored in the local servers. Since

the data replicas are stored in the same server, update of

replicas is done using lock and release method. Number of

replica are depend on the number of query tries to access

the same piece of data in the same server. The Cost of

computing is based on Load balancing, concurrent

execution by resource allocation and reduces the waiting

time of the query by placing the replicas in the server. The

goal is to load sharing by use of replicas by computing

resource usage cost for transaction processing. The cost is

to minimize by proper allocation of resources in load

sharing, data availability in distributed environment.

A. Proposed Methodology

Suppose that n be the number of use cases share m

resources. Assuming that application is model using use

case diagram using UML. Each use case Ui

consisting of

k parallel and dependent sub queries, some queries are

assigned same resources for load sharing and replica

available. For example: use case with-draw has

withdrawn, checks balance, overdraw, and are parallel sub

queries. These tasks are sharing Rj resources and share

the Rj capacity and expense Pj according to its processing

capacity. These tasks are allocating Rj resources for load

sharing. Each sub query may have to share Rj and may be

waiting to share Rj. The assigning these queries into these

resources based on the data replica available. Number of

replica based on the query waiting for resources. A

solution of the scheduling problem is a non-negative

matrix i.e. query allocation matrix a of n rows one for each

use case and m columns one for each resource. The entry

aij is the allocation of query in the Ui use case to the Rj

resources based data availability.

The final allocation matrix is obtained based on allocation

of monitor server. It monitors the load between and the

replicas of the corresponding server. It is called as the

dispatcher. Dispatcher determines the query to be assigned

to which replica and responsible for balancing the load.

The selection of resource and data replica availability by

estimation of weight of the resource. The weight is

obtained by average service time for the serviced the query

in each resource and number of requests in the queue. This

estimation is approximate time required ti process the

query. The weight if the i
th

 resource is defined as

WRi = ASTRi + Q Ri,t (1)

Where ASTRi average service time of the i
th

 resource

 Q Ri,t number of requests waiting in the queue of the i
th

replica at time t

The dispatcher of the server estimates the weight of the

resource in two steps: i) when query arrives at the server,

the dispatcher send the message to all the resources to

collect the current status of the weight. Based on the

weight of the resources, transaction is assigned the

resource which is having least weight. The allocation

matrix and cost of computation is estimated based on the

resource allocation in transaction processing system for

validation of our result. Using allocation matrix another

two matrices are obtained: Completion time matrix T, and

final execution matrix E. Let tij of T be the turnaround time

it takes resource Rj to complete aij queries of the use case

Ui. Ui queries are parallel and dependent, the completion

time of use case Ui is given by max {tij | tij Є ti}, where ti

denotes the vector of the i
th

 row of matrix T. The entry Eij

of the matrix E is the network cost for using resource Rj to

complete aij queries. So the total cost of usage of Ui is

m

j
eij

1
. In general there is a tradeoff between

completion time and cost of usage of resources of each

use case Ui. Let wt and we be the weight of completion time

and network cost respectively. Therefore the

Total cost of

 ・

 Denote the utility of use case Ui.

IV. ALGORITHM

Step 1: The key scenarios of the software system are

identified.

Step 2: The use cases representing the key scenarios are

identified to develop the use case model using UML.

Step 3: Let m be the no of resources(R) are used in the

proposed architecture.

Step 4: Identify the subtask in each use case share m

resources (nodes)

Step 5: Each resource Rj has fixed price Pj according to

the capacity..

Step 6: Identify the vector p = (p1,p2, ..,pm) satisfies p1

< p2 < ・ ・ ・ < pm, and the corresponding execution

time of any subtask of an arbitrary task Si satisfies ˆti1 >

ˆti2 > ・ ・ > ˆtim.

Step 7: Identify the multiple sub queries in each use case,

they share Rj capacity and expense.

Step 8: The dispatcher of the server estimates the weight

of the resource in two steps:

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2532

 i) When query arrives at the server, the dispatcher sends

the message to all the resources and collects the current

status of the weight. Weight is computed using the

equation (1)

 ii) Based on the weight of the resources, transaction is

assigned the resource which is having least weight

Step 9: Let ˆtij denote the execution time it takes for

resource Rj solely to complete one subtask of a use case

Ui without consideration of communication time.

Step 10: Let ai represents the amount of sub query

allocated to the resource Rj.

Step 11: Derived from a another two n x m matrix are

obtained

i.) Compute completion time matrix T. The entry tij of T

is the turnaround time it takes for Resource Rj to

Complete aij sub queries of a use case Ui i.e. tij = ∑j

aij * ˆtij where ˆtij execution matrix

ii) Expense matrix E. The entry eij of E is the expense

Ui pays for Resource Rj to Complete aij sub queries, i.e.

eij = aij * ˆtij * pj when only one sub task assigns to one

resource

Step 12: Let wt and we denote the weights of completion

time and expense, respectively.

 We assumed wt = we = 0.5;

Step 13: Therefore, the total “cost” of a query is

 Ui is wt ・ maxtij * ti {tij} + we *∑j eij.

Step 14: Compute utility of task

 ui (ai) = 1/ (wt * maxtij * ti {tij} + we *∑j eij.)

Step 15: Repeat step 9 through 12 for a different allocation

strategy until it reaches the optimum allocation i.e. least

cost by predicts the performance.

V . ILLUSTRATED THE PROBLEM MODEL WITH

CASE STUDY

In this section we proposed a case study, Airline

reservation application IV.A.[15]IV.A.[16] that are highly

distributed in nature for apply the proposed methodology,

to illustrate and validate. The prediction of performance

for this problem is discussed using different approach in

IV.A.[15]IV.A.[16]. The required data are fragmented

and distributed in various nodes of the system. Description

of the Case Study:

Nachtfliegen airline system has major functions: Flight

Booking, Login, Abandon, Get Flight planning, Find

Flights, Select Seat, Get Fare, Purchase Itinerary, and

Store Itinerary, The database is fragmented and deployed

in a given architecture of 8 nodes. All servers connected

by a LAN. The details can be found in IV.A.[16] the

typical requests from the users for the application may be

authenticating the user, getting the page of the

application, searching for the appropriate flights, selecting

the desired seat, purchase the ticket, store the details about

the flight for later reference, and abandon the Itinerary.

The use cases have taken in IV.A.[16], actors identified

for the scenarios are presented in the use case model in

Figure 1.

A. Estimation of the cost matrix of a given use cases.

In this section, we illustrate the proposed methodology for

the case study. Our objective is to estimate the cost of the

given use case by maximum utilization of servers and

minimize the cost by proper allocation strategy. We

estimate (i) find allocation strategy (ii) compute

turnaround time (iii) compute Expense matrix E (iv)

compute total cost of each query (v) Compute utility of

resources by each query. Let wt and we denote the weights

of completion time and expense, respectively. We assume

wt = we = 0.5. Optimum allocation strategy is obtained by

different runs and using probable execution time matrix.

The use case model given in Figure 1 consists of use

cases namely, Login, GetFlightPlanningPage, Plan

Itinerary, Get Fares, Select Segment, Select Seat, Purchase

Itinerary, Store Itinerary and Abandon(U1 - U7) the actors

namely, customer, user and frequent flyer. The terminals

of the nodes are connected to their respective computers.

Figure 1 Use case model of the case study

VI. RESULTS AND GRAPHS

If the price vector of each resources(R1 - R8) is ranging

from 1 to 10 by taking low level is 1 middle level is 5 and

PlanItinerary

Login GetFlightPlanningPage

FindFlights

GetFare

SelectSeat

PurchaseItinerary

StoreItinerary

User

abandon

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Frequent Flyer

<<include>>

<<include>>

<<include>>

Customer

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2533

high level is 10, then the execution matrix i.e. final

execution time matrix, completion time matrix and

expenses matrix is obtained in table 1, table 3 and table 4

respectively. The price vector 2 The available resources

(R1 – R8) and their configuration as Intel Core 2 Duo, 3.0

GHz. The description of use cases (U1 – U8) as described

above.

Table 1: The execution time matrix

Table 2 Allocation matrix

The use case U1 chooses { R2, R4, R5, R6,} and U2

chooses {R1, R2, R3, R7, R8} U3 chooses (R1, R3, R4,

R7, R8) U4 chooses (R1, R3, R5, R6, R7, R8) U5

chooses (R1, R2, R4, R5, R8) U6 chooses (R1, R2, R4,

R5, R8) U7 chooses (R1, R2, R3, R7, R8) and U8 chooses

(R3, R4, R5, R6, R7,) as mentioned in the allocation

matrix is in table 2. The use cases contains sub tasks share

the capacity and expense of allocated resources. The task of

each use case share the resources based on the data

availability. The data is distributed based on the

requirement of the applications. The resources are sharing

by parallel tasks. The completion and expense matrix are

obtained and the results are shown in table 3 and table 4

respectively.

Table 3 The completion time matrix

Table 4: The expense matrix/network usage matrix

The total cost of each use case and its utilities mentioned

in table5. We observed from the shaded part in table 5

that the cost of using resources by the use case U3 is

highest compared to others use case and the

corresponding utility of resources is least. Hence we

conclude that more and more utility of resources

effectively the cost of paying is least and vice versa. In use

case U6 least cost but the utility of resources is highest

not properly utilized. Hence we deduce from the results

that more and more usage of resources the expense of

network usage is least and we obtain optimum allocation

strategy.

Table 5: Utility of a given matrix

Use case
Cost of each

Use case

Utility of

Resource

U1 35 0.023925

U2 30 0.030257

U3 30 0.023310

U4 25 0.027778

U5 22 0.034118

U6 20 0.040404

U7 17 0.050787

U8 12 0.057637

For illustrative purpose we have taken seven price vector P

from 2 to 3.4 Each resources has taken different values

which are uniformly distributed with the minimum value 2

average 2.7 and the maximum range is 3.4, the

corresponding utility of resources and the cost of each

use case mentioned in table 5. The results show the some

resources 5, 6, 7, and 8 are used most of the time in

computation. The load sharing is uniform in number of

tasks are assigned but load is not uniform in computation

time. Hence the load balancing is determined in terms of

number of tasks and computation time. In figure 6 shows

the cost of computation of each use case.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2534

Figure 6: Utility of Resources

Figure 7: Cost of use case

In the figure 6 shows the Utility of resources of eight use

cases. The cost of Use case 1 utilizes 0.023925 Use case 2

utilizes 0.030257 etc. as shown in table 5. The utility of

resources in use case 8 is high and least cost with

allocation matrix as in graph 2. The results show that the

utility of resources increases the cost is proportionally

decreases and vice versa as shown in the figure 6 and

figure 7. Cost vs. utility, price vector of resources are

represented in figure 8

Figure 8: Cost Vs Utility of resources

VII CONCLUSION

In this paper we propose load balancing strategy by

allocation of resources during early stages of SDLC. The

cost of allocation strategy of each resource is computed

and the results are obtained. We can determine the

optimum load balancing strategy by knowing the uniform

cost of the resources sharing in computation. We propose

an algorithm for load balancing resource allocation

strategy that optimum utilization of resources and

minimize the cost of computation and load sharing based

on the number of tasks and not the duration of the task.

Data fragment replication is allocated into these set

resources in the proposed architecture for data usage. The

fragment allocation, resource allocation strategy, load

balancing is considered in minimize the cost computation

and uniform workload distribution.

 REFERENCES

[1] Matthias Wiesmann and Andre´ Schiper, Member, IEEE

Comparison of Database Replication Techniques Based on Total

Order Broadcast, IEEE TRANSACTIONS ON KNOWLEDGE

AND DATA ENGINEERING, VOL. 17, NO. 4, APRIL 2005

[2] Xin Gu, Wujuan Lin, and Bharadwaj Veeravalli, Member, IEEE

Practically Realizable Efficient Data Allocation and Replication

Strategies for Distributed Databases with Buffer Constraints IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

[3] Vishal Pathak, Ajay Pratap Rabin Kr. SinghAbhishek Kr.

SinghCIRS: A State-Conscious Concurrency ControlProtocol for

Replicated Real-Time Databases Vishal Pathak et al. /

International Journal on Computer Science and Engineering

(IJCSE) ISSN : 0975-3397 Vol. 3 No. 1 Jan 2011

[4] SANJAY KUMAR TIWARI, A .K. SHARMA, VISHNU

SWAROOP DISTRIBUTED REAL TIME REPLICATED

DATABASE: Concept and Design Sanjay Kumar Tiwari et al. /

International Journal of Engineering Science and Technology

(IJEST) ISSN : 0975-5462 Vol. 3 No. 6 June 2011.

[5] Ainul Azila Che Fauzi, A. Noraziah, Noriyani Mohd Zain, A.H.

Beg “Handling Fragmented Database Replication through Binary”

Vote Assignment Grid Quorum Journal of Computer Science 7

(9): 1338-1342, 2011, ISSN 1549-3636 © 2011 Science

Publications,

[6] ASHRAF AHMED, DANAPAL DURAI DOMINIC*, AZWEEN

ABDULLAH, A NOVEL REPLICATION STRATEGY FOR

LARGE-SCALE MOBILE DISTRIBUTED DATABASE

SYSTEMS Journal of Engineering Science and Technology Vol.

6, No. 3 (2011) 268 - 299 © School of Engineering, Taylor‟s

University

[7] Matthias Nicola* Matthias Jarke (Senior Member, IEEE)*

Performance Modeling of Distributed and Replicated Databases

[8] Jiaying Zhang and Peter Honeyman Hierarchical Replication

Control in a Global File System Seventh IEEE International

Symposium on Cluster Computing and the Grid(CCGrid'07) on

Cluster Computing and the Grid(CCGrid'07) 0-7695-2833-3/07

$20.00 © 2007

0

0.02

0.04

0.06

0.08

1 2 3 4 5 6 7 8

U
ti

lit
y

Use case number

Utility of Resources

0

20

40

60

80

1 2 3 4 5 6 7 8

va
lu

e
s

use cse nos

Cost vs Utility

Cost

Utilit
y

0

20

40

1 2 3 4 5 6 7

C
o

st

Use case number

Cost of Use case

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJARCCE www.ijarcce.com 2535

[9] Alfrânio Correia, Jr.U. Minho, José Pereira, U. Minho, Luís

Rodrigues, U. Lisboa, Nuno Carvalho, U. Lisboa, Ricardo Vilaça,

U. Minho GORDA: An Open Architecture for Database

Replication Sixth IEEE International Symposium on Network

Computing and Applications (NCA 2007) 0-7695-2922-4/07

$25.00 © 2007

[10] Jin Xiong, Jianyu Li, Rongfeng Tang, Yiming Hu “Improving

Data Availability for a Cluster File System through

Replication 978-1-4244-1694-3/08/$25.00 ©2008 IEEE.

[11] Xiangzhong Xu, Jingye Wang, and Lijun Pan A Vector-based

Atomic Broadcast Protocol for Deferred Updates in Replicated

Distributed Databases 978-1-4244-1787-2/08/$25.00_c 2008

IEEE

[12] Ouri Wolfson, Member, IEEE Computer Society, and Yixiu

Huang Competitive Analysis of Caching in Distributed Databases

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, VOL. 9, NO. 4, APRIL 1998 391

[13] ISHFAQ AHMAD, YU-KWONG KWOK, SIU-KAI SO

Evolutionary Algorithms for Allocating Data in Distributed

Database Systems Distributed and Parallel Databases, 11, 5–32,

2002

[14] Leon ¸Tâmbulea, Manuela Horvat-Petrescu Redistributing

Fragments into a Distributed Database Int. J. of Computers,

Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844

Vol. III (2008), No. 4, pp. 384-394

[15] Evangelin Geetha, D., Suresh Kumar, T. V., and Rajani Kanth, K.:

„Predicting the Software Performance during Feasibility Study.

[16] Connie, U. Smith, and Lloyd G. Williams: „Performance

Solutions‟ (Addison-Wesley, 2000).

[17] Matthias Nicola and Matthias Jarke, Senior Member, IEEE

Performance Modeling of Distributed and Replicated Databases

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, VOL. 12, NO. 4, JULY/AUGUST 2000

[18] Danilo Ardagnaa, Sara Casolari b, Michele Colajanni b, Barbara

Panicucci a, Dual time-scale distributed capacity allocation and

load redirect algorithms for cloud systems J. Parallel Distrib.

Comput. 72 (2012) 796–808

[19] Javier David Conchaa A tenant-based resource allocation model

for scaling Software-as Espadas a, Arturo Molina b, Guillermo

Jiménez a, Martín Molina b, Raúl Ramírez a, -a-Service

applications over cloud computing infrastructures 0167-739X/$ –

see front matter © 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.future.2011.10.013A.

